## Archdiocese of Newark Catholic Schools

## Curriculum Mapping

Curriculum mapping is a process that helps schools and districts/dioceses determine the "agreed-upon" learning for all students. Curriculum mapping was undertaken in the Archdiocese of Newark in order to ensure that a consistent, clearly articulated curriculum infused with Gospel values is being provided to all students in our schools. The curriculum maps for the Catholic schools of the Archdiocese of Newark identify the content to be taught and skills to be mastered at each grade level.

The expertise and experience of the educators within our schools is the main source for determining the content and skills students will be expected to master. The Archdiocesan curriculum maps are developed through a collaborative process which involves individual teacher contributions, small group sessions and larger group meetings. Relevant educational standards, including those proposed by content area experts, the New Jersey Core Curriculum Content Standards, and the Common Core State Standards, are used as a resource in the curriculum mapping process. The resulting consensus maps reflect the collective thinking of classroom teachers based on their observation of student learning and their knowledge of educational practice and research. The Archdiocesan curriculum maps include teacher generated ideas for the infusion of Gospel values and faith connection activities.

While the curriculum maps clearly articulate the expected learning for all students, individual teachers have the flexibility to teach the content and skills in their own manner by:

- utilizing their own particular strengths and teaching style
- addressing the varying learning needs of their students
- determining the order in which the content and skills are presented within a marking period
- including additional content and skills once students have met the learning expectations identified in the curriculum map

Administrators at all levels will maintain the responsibility to ensure that teachers are following the curriculum maps and that appropriate teaching is being conducted. This will be done through a combination of classroom observations, faculty meetings, professional development opportunities and teacher evaluations, as well as by using various measurement tools, including but not limited to in-class and standardized testing. The Archdiocesan curriculum maps will help ensure the academic excellence that is integral to the mission of our Catholic schools and will provide educators and parents with a clear understanding of the learning expectations at each grade level.

Algebra I
July 2014

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra 1

First Trimester: September-November


Algebra I
Page 1

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra 1

First Trimester: September-November

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| A.SSE. 1 Interpret expressions that represent a quantity in terms of its context. <br> a) Interpret parts of an expression, such as terms, factors, and coefficients. <br> b) Interpret complicated expressions by viewing one or more of their parts as a single entity. <br> 6.EE.2C Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). Example: Use the formulas $V=s 3$ and $A=6 s 2$ to find the volume and surface area of a cube with sides of length $s=1 / 2$. <br> A.SSE. 2 Use the structure of an expression to identify ways to rewrite it. | Variables and Expressions <br> Order of Operations <br> Algebraic Expressions | Translate verbal phrases into algebraic expressions, equations and inequalities. <br> Identify and combine like terms. <br> Simplify and evaluate numerical expressions. <br> Interpret and evaluate algebraic expressions using the order of operations. <br> Translate algebraic expressions. <br> Simplify and evaluate algebraic expressions. <br> Rewrite algebraic expressions. |  |  |

Page 2

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra 1

First Trimester: September-November

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| N.Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. <br> A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. <br> A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. <br> A.CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. <br> A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. <br> A.REI. 11 Explain why the $x$-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect | Equations <br> - linear <br> - literal <br> - absolute value | Solve multi-step equations. <br> Solve equations with variables on both sides. <br> Recognize when an equation has one solution, infinite solutions, or no solution. <br> Rewrite a formula to solve for any one of its variable components. <br> Check the accuracy of a solution by substituting it in the original equation. <br> Write and solve absolute value equations. <br> Create equations. |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra 1

First Trimester: September-November

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| are the solutions of the equation $f(x)=$ $g(x)$; find the solutions approximately, (e.g., using technology to graph the functions, make tables of values, or find successive approximations.) Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. <br> 7.RP. 2 Recognize and represent proportional relationships between quantities. <br> a) Decide whether two quantities are in a proportional relationship e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. <br> b) Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. <br> c) Represent proportional relationships by equations. <br> 7.RP. 3 Use proportional relationships to solve multi-step ratio and percent problems. Examples: Simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent of change (increase and decrease), percent error. | Ratios, Proportions, Percents | Use formulas, proportions, and percents to solve reallife problems. <br> Recognize a proportion and successfully apply the cross-product property to solve. |  |  |

Page 4

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra 1

First Trimester: September-November

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. Example: Represent inequalities describing nutritional and cost constraints on combinations of different foods. <br> A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. <br> 6.NS.6C Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane. <br> F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. | Inequalities <br> - simple <br> - linear <br> Word problems: Strategies \& Applications | Solve multi-step inequalities. <br> Solve inequalities with variables on both sides. <br> Write and solve simple linear inequalities. <br> Check the accuracy of a solution by substituting in the original equation. <br> Graph linear inequalities and understand the significance of the slope and intercept points of these graphs. <br> Develop and apply strategies to solve real-life word problems. |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra 1

First Trimester: September-November

| Standards | Content | Skills | Assessment | Gospel Values \& Faith <br> Connections |
| :--- | :--- | :--- | :--- | :--- |
| F.IF.5 Relate the domain of a function to <br> its graph and, where applicable, to the <br> quantitative relationship it describes. |  |  |  |  |
| F.IF.8b Use the properties of exponents <br> to interpret expressions for exponential <br> functions. |  |  |  |  |
| N.Q.1 Use units as a way to understand <br> problems and to guide the solution of <br> multi-step problems; choose and interpret <br> units consistently in formulas; choose <br> and interpret the scale and the origin in <br> graphs and data displays. |  |  |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

## Second Trimester: December-February

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| 8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. <br> 8.F. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). <br> 8.F. 3 Interpret the equation $\mathrm{f}(\mathrm{x})=\mathrm{mx}+$ b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. <br> 8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two $(\mathrm{x}, \mathrm{y})$ values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. <br> 8.F. 5 Describe qualitatively the functional relationship between two | Relations and Functions | Identify when a relation is a function and include the vertical line test. <br> Define a function's domain and range and organize this data in table form. <br> Compare properties of two functions. <br> Write, rewrite and build functions. <br> Graph absolute value functions. <br> Find the inverse of linear functions. <br> Interpret functions. <br> Construct linear, quadratic, and exponential functions. | Student learning will be assessed on a continual basis using various types of formal and informal assessments. A list of possible assessment methods is provided below: <br> Tests <br> Quizzes <br> Student generated work <br> Basic fact quizzes <br> Projects <br> Cross-curriculum projects <br> Critical thinking questions <br> Problem-solving relay races <br> Graded and ungraded recitations <br> Speed tests of mental math <br> STEM projects <br> Games/contests <br> Mid-chapter tests <br> Interactive whiteboard activities | Gospel values should be evident in the classroom environment and referenced and reinforced throughout the curriculum. <br> Gospel Values <br> Community <br> Compassion <br> Faith in God <br> Forgiveness <br> Hope <br> Justice <br> Love <br> Peace <br> Respect For Life <br> Service <br> Simplicity <br> Truth <br> Teachers will also highlight elements of Catholic identity that can be related to topics in the Math curriculum. |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. <br> A.SSE. 2 Use the structure of an expression to identify ways to rewrite it. <br> F.BF.1Write a function that describes a relationship between two quantities. <br> a) Determine an explicit expression, a recursive process, or steps for calculation from a context. <br> b) Combine standard function types using arithmetic operations. <br> F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. |  |  | Online Programs <br> Discussion and class participation |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment | $\begin{array}{c}\text { Gospel Values \& Faith } \\ \text { Connections }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\begin{array}{l}\text { F.BF.4 Solve an equation of the form } \\ \text { f(x) } \text { c for a simple function } \mathrm{f} \text { that has } \\ \text { an inverse and write an expression for the } \\ \text { inverse. Example: } f(x)=2 x 3 \text { for } x>0 \text { or } \\ f(x)=(x+1) /(x-1) \text { for } x \neq 1 .\end{array}$ |  |  |  |  |
| $\begin{array}{l}\text { F.IF.9 Compare properties of two } \\ \text { functions each represented in a different } \\ \text { way (algebraically, graphically, } \\ \text { numerically in tables, or by verbal } \\ \text { descriptions). }\end{array}$ |  |  |  |  |
| F.LE.2 Construct linear and exponential |  |  |  |  |$)$

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. <br> F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $f$ is a function and $x$ is an element of its domain, then $f(x)$ denotes the output of $f$ corresponding to the input x . The graph of $f$ is the graph of the equation $\mathrm{y}=f(x)$. <br> F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. <br> F.IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. | Writing, Graphing and Forms of Linear Equations <br> - slope-intercept <br> - point-slope <br> - standard <br> - parallel lines <br> - perpendicular lines <br> - intercepts <br> - distance and midpoint | Graph linear equations. <br> Write and graph forms of linear equations and understand the significance of the slope and intercept points of these graphs. <br> Identify and graph x and y intercepts. <br> Use formulas to determine: slope, point-slope, and slope-intercept. <br> Use formulas to determine distance and midpoint. <br> Compare and contrast graphs of parallel and perpendicular lines. <br> Define parallel and perpendicular slopes. <br> Write equations for parallel and perpendicular lines. |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

| Second Trimester: December-February | Standards | Content | Skills | Assessment <br> Connections |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Differentiate the various <br> forms of linear equations: <br> Slope-Intercept, Standard, <br> Point-Slope. <br> Choose the most <br> appropriate form of a linear <br> equation given the <br> problematic situation. |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment <br> Gospel Values \& Faith <br> Connections |  |
| :--- | :--- | :--- | :--- | :--- |
| 8.EE.8 Analyze and solve pairs of <br> simultaneous linear equations. <br> a) <br> Understand that solutions to a <br> system of two linear equations in <br> two variables correspond to points <br> of intersection of their graphs, <br> because points of intersection satisfy <br> both equations simultaneously. | Systems of Linear <br> Equations and <br> Linear <br> Inequalities | Solve systems of linear <br> equations and inequalities <br> both graphically and <br> algebraically; choose the <br> best method given the <br> system. |  |  |
| bolve systems of two linear |  |  |  |  |
| equations in two variables |  |  |  |  |
| algebraically, and estimate solutions |  |  |  |  |
| by graphing the equations. Solve |  |  |  |  |
| simple cases by inspection. |  |  |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. <br> A.REI. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. <br> A.REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). <br> A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. <br> F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or | Rate of change/slope | Determine direction of a line from the slope. <br> Identify slope from a graph and calculate using two points. <br> Use slope to determine average rate of change in application problems. |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment | Gospel Values \& Faith <br> Connections |
| :--- | :--- | :--- | :--- | :--- |
| negative; relative maximums and <br> minimums; symmetries; end behavior; <br> and periodicity. |  |  |  |  |
| F.IF.5 Relate the domain of a function to <br> its graph and, where applicable, to the <br> quantitative relationship it describes. |  |  |  |  |
| F.IF.6 Calculate and interpret the average <br> rate of change of a function (presented <br> symbolically or as a table) over a <br> specified interval. Estimate the rate of <br> change from a graph. |  |  |  |  |
| S.ID.7 Interpret the slope (rate of <br> change) and the intercept (constant term) <br> of a linear model in the context of the <br> data. |  |  |  |  |
| 8.SP.3 Use the equation of a linear model <br> to solve problems in the context of <br> bivariate measurement data, interpreting <br> the slope and intercept. |  |  |  |  |
| F.LE.1 Distinguish between situations <br> that can be modeled with linear functions <br> and with exponential functions. <br> b) Recognize situations in which one <br> quantity changes at a constant rate <br> per unit interval relative to another. |  |  |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

| Second Trimester: December-February |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| c) Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. |  |  |  |  |
| A.REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). | Direct Variation | Write and solve linear equations that use direct/inverse variation. |  |  |
| A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. | Laws of Exponents | Simplify exponential expressions using the properties/laws of exponent. <br> Transform expressions to exponential functions using properties/laws of exponents |  |  |
| Algebra I $\quad$ 7/2014 Page 15 |  |  |  |  |
|  |  |  |  |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Second Trimester: December-February

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| A.APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, multiply, and divide polynomials. <br> F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <br> F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. <br> F.IF.8b Use the properties of exponents to interpret expressions for exponential functions. <br> N.Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. | Polynomials <br> - classification <br> - operations <br> - special products | Recognize different types of polynomials and write them in standard form. <br> Classify each type of polynomial expression by degree and number of terms. <br> Simplify polynomial expressions. <br> Add, subtract, and multiply polynomial expressions. <br> Understand the process for division of polynomial expressions. <br> Develop and apply strategies to solve real-life word problems. |  |  |

Algebra I
Page 16

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Third Semester: March-June

| Standards |
| :--- |
| A.SSE.2 Use the structure of an <br> expression to identify ways to rewrite it. |

A.SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a) Factor a quadratic expression to reveal the zeros of the function it defines.
b) Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
A.REI. 4 Solve quadratic equations in one variable.
a) Use the method of completing the square to transform any quadratic equation in $x$ into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Third Semester: March-June

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Quadratic Formula: } \\ & x=\frac{-b \pm \sqrt{b^{2}}-4 a c}{2 a} \end{aligned}$ <br> b) Solve quadratic equations by inspection (e.g., for $x^{2}=49$ ), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers $a$ and $b$. <br> N.RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. <br> N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents. | Rational Expressions <br> Radicals | Simplify rational expressions using factoring. <br> Add, subtract, multiply, and divide rational expressions. <br> Identify and evaluate radical whole number expression. <br> Simplify, multiply, rationalize, add, and subtract radicals. | Discussion and class participation |  |

## Archdiocese of Newark Catholic Schools <br> Curriculum Map for Mathematics <br> Grade 8 Algebra I

Third Semester: March-June

| Standards | Content | Skills | Assessment | Gospel Values \& Faith Connections |
| :---: | :---: | :---: | :---: | :---: |
| A.APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, multiply, and divide polynomials | Division of Polynomials | Divide polynomials using long division. |  |  |
| F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <br> F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. <br> F.IF.8b Use the properties of exponents to interpret expressions for exponential functions. <br> N.Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. | Solving rational equations <br> Word Problems: Strategies \& Applications | Apply appropriate skills to solve rational equations and check solutions. <br> Simplify, multiply, rationalize, add, and subtract radicals. <br> *Enrichment: Use of graphing calculator <br> Develop strategies to solve word problems with real world applications. |  |  |

